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[1] Current estimates of global dust emission vary by over a factor of two. Here, we use
multiple data types and a worldwide array of stations combined with a dust model to
constrain the magnitude of the global dust cycle for particles with radii between 0.1 and
8 mm. An optimal value of global emission is calculated by minimizing the difference
between the model dust distribution and observations. The optimal global emission is most
sensitive to the prescription of the dust source region. Depending upon the assumed
source, the agreement with observations is greatest for global, annual emission ranging
from 1500 to 2600 Tg. However, global annual emission between 1000 and 3000 Tg
remains in agreement with the observations, given small changes in the method of
optimization. Both ranges include values that are substantially larger than calculated by
current dust models. In contrast, the optimal fraction of clay particles (whose radii are less
than 1 mm) is lower than current model estimates. The optimal solution identified by a
combination of data sets is different from that identified by any single data set and is
more robust. Uncertainty is introduced into the optimal emission by model biases and the
uncertain contribution of other aerosol species to the observations.
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1. Introduction

[2] Aerosols are an important component of the global
radiation budget. Mineral (or ‘soil’) dust aerosols are one of
the largest contributors to aerosol radiative forcing [Tegen et
al., 1997; Penner et al., 2001]. In order to compute this
forcing, accurate information is needed on the distribution
of dust within the atmosphere along with the particle size
distribution. These properties have uncertainties associated
with them and therefore contribute to the uncertainty of dust
radiative forcing [Houghton et al., 2001]. This study con-

centrates on constraining the geographic and particle size
distribution of dust aerosols.
[3] Dust emission, whereby soil particles enter the atmo-

sphere, has been measured at only a small number of
locations over a relatively short period of time [Tegen et
al., 2002]. A global value has been extrapolated from
limited observations over specific source regions, such as
the Sahara and Asia [Uematsu et al., 1985; Swap et al.,
1996; Marticorena and Bergametti, 1996; Zhang et al.,
1997]. The global sum resulting from these measurements
ranges over two orders of magnitude from 60 to 5,000 Tg/yr
[Schutz, 1980; Goudie, 1983; Duce, 1995; Goudie and
Middleton, 2001]. Oceanic deposition observations repre-
sent a potential lower bound on global emission but are
scarce.
[4] Dust emission is estimated indirectly by constraining

a model with observations of aerosol amount. Modelers are
confronted with difficulties because dust emission is a non-
linear function of wind speed that depends on many other
factors that are poorly known on the scale of the model grid.
Emission E is often calculated according to:

E ¼ CF rð Þ w� wtð Þw2 for w � wt

0 for w < wt

�
ð1Þ

where w is the surface wind speed, wt is the threshold above
which emission occurs, C is a coefficient of proportionality,
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and F(r) represents the dependence of emission upon
particle size, denoted by radius r [Gillette, 1974]. The
emitted size distribution F(r) depends upon both the size
distribution of particles in the soil and the intricate transfer
of momentum from the largest particles displaced by the
wind to the smallest particles that are buoyant enough to
enter the atmosphere [Alfaro and Gomes, 2001]. While the
coefficient C and size distribution F(r) can be specified
empirically in certain situations, neither is well-known on
the scale of global models. These parameters are often
chosen so that the model dust distribution matches the
observations at a particular location such as Barbados,
where there are long term measurements [Prospero, 1996].
Global emission from recent models varies by over a factor
of two between 800 and 2,000 Tg/yr for particle diameters
below 10 mm [Ginoux et al., 2001; Tegen et al., 2002;
Mahowald et al., 2002; Zender et al., 2004]. Global
emission is sensitive to the data set and region used as a
model constraint, in addition to the physics of the model.
[5] In this article, we constrain the emission and global

distribution of dust aerosols using multiple data types and a
worldwide array of stations. Using the dust distribution
calculated by the NASA Goddard Institute for Space
Studies (GISS) atmospheric general circulation model
(AGCM), we minimize the squared difference between the
model distribution and observations to derive an optimal
value of global dust emission. More precisely, we vary clay
and silt emission separately through the product CF(r) in
order to identify values that are in best agreement with
observations. (Clay particles are defined with radius r less
than 1 mm, compared to larger silt particles.)
[6] In section 2, we review the parameterization of dust

aerosols within the GISS AGCM [Miller et al., 2006]. We
describe the data types used to constrain the model in
section 3. In section 4, we discuss the minimization proce-
dure used to derive a dust cycle that is in optimal agreement
with observations. In section 5, we calculate the optimal
global emission of clay and silt particles, along with a range
of emission that agrees nearly as well with the observations.
We also calculate the sensitivity of the optimal value to
different data sets and how this value changes if we
constrain the model for specific regions such as Africa,
Asia, and Barbados. Our conclusions are given in section 6.

2. Dust Model

[7] Dust aerosol is calculated using the newly available
modelE AGCM of the NASA Goddard Institute for Space
Studies [Schmidt et al., 2006]. The dust model represents a
substantial upgrade to the version developed by Tegen and
Miller [1998], and is described in more detail in a compan-
ion article [Miller et al., 2006].
[8] The AGCM has horizontal resolution of 4� latitude by

5� longitude and 20 layers extending from the surface to
0.1 mb, of which 10 are in the troposphere. The planetary
boundary layer (PBL) is simulated using a non-local,
second-order model of turbulence that extends throughout
the depth of the atmosphere [Cheng et al., 2002], an
improvement to the previous version of the GISS model
where turbulent mixing occurred only up to the middle of
the first layer around 200 m. Tracers (including dust) are
advected using the quadratic upstream scheme [Prather,

1986], which computes the slope and curvature of a tracer in
addition to its grid box average, increasing the effective
resolution.
[9] The model transports four size categories of soil dust:

one for clay with particle radii less than 1 mm, and three for
silt with radii of 1–2, 2–4, and 4–8 mm. Particles with radii
less than 1 mm are transported as one class because they are
not fractionated by gravitational settling, due to the par-
ticles’ similar fall speeds [Tegen and Lacis, 1996]. However,
in the radiative transfer calculations, the clay category is
further divided into four size bins.
[10] Enclosed basins containing former lake beds or

riverine sediment deposits provide an abundance of small
clay-sized particles that are loosely bound, and dominate
global dust emission according to the Total Ozone Mapping
Spectrometer (TOMS) aerosol index satellite retrieval
[Prospero et al., 2002]. Modeling studies show that inclu-
sion of these ‘preferred’ source regions improve the realism
of the model dust load in the vicinity of the sources [Zender
et al., 2003]. To identify these regions, we choose from
several alternative representations based upon topography
[Ginoux et al., 2001] (hereafter referred to as GINOUX), the
presence of dry lake basins [Tegen et al., 2002] (hereafter
TEGEN), an alternative identification of dry lakes (referred
to as Geomorphology by Zender et al. [2003]) (here referred
to as ZENDER1), and a linear function of surface reflec-
tance retrieved from Moderate Resolution Imaging Spec-
troradiometer (MODIS) [Grini et al., 2005] (hereafter
ZENDER2). For the TEGEN case, emission results from a
combination of preferred sources and sources identified
using conventional vegetation and soil wetness criteria.
We weight these so that preferred sources contribute roughly
90% of the global emission, consistent with Tegen et al.
[2002], although our results are insensitive for fractions as
low as 50%. We will consider the sensitivity of our results
to the preferred source formulation.
[11] Dust emission depends upon the fraction of the wind

stress absorbed by soil particles, as opposed to ‘roughness
elements’ like vegetation and topography; wind erosion of
soil decreases with the roughness of the surface. We use the
European Remote Sensing (ERS) microwave scatterometer
measurements to identify regions of low surface roughness.
The ERS is very sensitive to surface roughness and can
detect subtle changes in desert morphology [Prigent et al.,
2001, 2005]. We permit emission in the fraction of the grid
box where the ERS backscattering is less than �13 dB,
corresponding to a roughness length below 0.1 cm.
[12] Together, particle availability and surface roughness

determine the susceptibility of a region to wind erosion and
dust emission. This susceptibility is defined as the product
of the grid box fractions permitting emission, according to
the preferred source and roughness prescriptions, and is
plotted in Figure 1 as a fraction of the maximum value. The
lightest shade corresponds to susceptibilities below one-
quarter of the maximum; the darkest corresponds to sus-
ceptibilities above three-quarters, and represents what are
potentially the most productive source regions. Beneath
each figure is the percentage of grid boxes in each category.
For example, the most productive grid boxes represent 3.6
and 3.3% of the total in the GINOUX and ZENDER2
prescriptions, as opposed to only 1.0% in the TEGEN
prescription. In the former cases, dust emission is poten-
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tially more concentrated within a few grid boxes. Also listed
is the total source area as a percentage of the global surface
area. In the ZENDER2 case, dust emission occurs over a
total area that is roughly three times the area of emission in
the GINOUX and TEGEN prescriptions. There are regional
differences in susceptibility that influence where dust is
emitted. Susceptibility is larger over Asia and Australia in
the TEGEN prescription, compared to GINOUX, which
emphasizes the Sahara. (Note that the TEGEN source has a
small component based upon a conventional vegetation
criterion that is not shown in Figure 1.)
[13] Saltation is observed as the main dust entrainment

mechanism [Iversen and White, 1982; Shao et al., 1993].
We assume that wt in (1) represents the threshold for the
saltating particles that are first lifted by the wind. These in
turn liberate from the surface the smaller particles that
remain suspended as aerosols, which we explicitly model.
Although wind tunnel measurements show that dust emis-

sion increases with the surface wind stress [Gillette, 1978],
here we use surface wind speed, which is related through
the surface roughness. In essence, we are making the
common approximation that the former lake beds that are
prolific sources have a globally uniform roughness length.
Marticorena et al. [1999] show that the gross features of the
seasonal cycle of Saharan dust emission are represented
quite well with the threshold for emission defined in terms
of surface wind speed.
[14] Realistic simulation of dust emission in an AGCM is

inhibited by the model’s coarse resolution compared to the
scale of the circulations observed to mobilize dust. Follow-
ing Cakmur et al. [2004], we introduce a probability
distribution p(w) dw of surface wind speed within each grid
box, so that (1) becomes:

E ¼ CF rð Þ
Z 1

wt

w2 w� wtð Þ p wð Þ dw ð2Þ

Figure 1. Susceptibility to dust emission (defined as the product of the grid box fractions identified as a
preferred source and satisfying a roughness criterion), categorized as a quarterly fraction of the maximum
value among all source grid boxes. The darkest squares (representing what are potentially the most
prolific dust sources) correspond to susceptibility within three-quarters of the maximum; the lightest
squares correspond to fractional susceptibility below one-quarter. Fractions below 0.001 are not plotted.
Below each panel, the global percentage of grid boxes in each category is listed, followed by the
percentage of the globe covered by dust sources. (While the susceptibility is labeled according to its
preferred source prescription, it varies additionally with surface roughness.)
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Although the emitted fractional size distribution F(r) is a
function of wind speed [Alfaro and Gomes, 2001], we
neglect this dependence for simplicity. The subgrid
probability distribution p(w) dw is calculated as in Cakmur
et al. [2004], based upon the AGCM parameterization of
PBL turbulence, along with dry and moist convection. In
the AGCM, subgrid wind fluctuations are dominated by dry
convection. This favors dust emission over deserts, where
there is continuous mixing within the boundary layer due to
intense solar heating of the surface. Given the introduction
of subgrid variability, the AGCM’s dust aerosol burden
improves significantly compared to satellite retrievals
[Cakmur et al., 2004]. Through the subgrid wind speed
parameterization, the AGCM identifies meteorological
situations that favor dust emission. This ‘preferred’
meteorology complements the preferred sources of erodible
particles described above.
[15] As described in section 4, separate values of the

product CF(r) are chosen for clay and silt to maximize
model agreement with the observations. Often, F(r) is
specified using a global survey of soil particle size. How-
ever, this survey is typically intended for agricultural
purposes [Zobler, 1986], and may not be the most relevant
estimate of particles susceptible to erosion, which often are
emitted by natural features such as dry lake beds. As noted
above, F(r) depends additionally upon the cascade of
momentum from larger particles dislodged by the wind
to the smaller aerosol particles. Because the calculation of
F(r) is complicated [Grini et al., 2002], we derive it
empirically in section 4. The effect of surface wetness
upon emission is parameterized by increasing the emission
threshold according to soil moisture, similar to the rela-
tionship suggested by Shao et al. [1996]. The resemblance
of the model dust distribution to observations is fairly
insensitive to the rate of threshold increase as described in
greater detail by Miller et al. [2006]. There is no dust
emission over snow or ice covered surfaces. In addition,
the model assumes an unlimited availability of soil par-
ticles for emission, ignoring any possible surface crusting
effects.
[16] Once the dust particles are emitted from the surface,

they scatter both solar and thermal radiation and get trans-
ported by the winds. In this study, the radiative forcing is
calculated as a diagnostic only and does not modify the
circulation. Dust radiative forcing is calculated as described
by Tegen and Lacis [1996] with two modifications. First,
the solar absorption is reduced (through the imaginary part
of the index of refraction) according to Sinyuk et al. [2003].
Second, optical thickness at thermal wavelengths is in-
creased by 30% to account for the neglect of thermal

scattering, as suggested by the calculations of Dufresne et
al. [2002].
[17] Dust particles are removed from the atmosphere by

both dry and wet deposition. The former is implemented
according to a resistance-in-series scheme derived from the
Harvard-GISS Chemical Transport Model [Chin et al.,
1996; Koch et al., 1999, 2006]. There is no remobilization
of settled dust. Wet deposition depends on the AGCM
surface precipitation and removes dust according to a
scavenging coefficient of 700 [Tegen and Miller, 1998] up
to the cloud top calculated by the model.

3. Data Sets

[18] To compute an optimal dust budget by minimizing
the error between the model and observations, this analysis
utilizes multiple data types and a worldwide array of
stations. These data sets are summarized in Table 1. The
first data set consists of aerosol optical thickness (AOT)
measured since the beginning of the 1990s by the Aerosol
Robotic Network (AERONET), based upon CIMEL Sun/
sky radiometers [Holben et al., 1998; Dubovik et al., 2000;
Holben et al., 2001]. These photometric observations are
able to determine aerosol optical thickness accurately,
although the aerosol species and chemical composition must
be determined separately. We select AERONET stations
where dust is likely to dominate the aerosol load to reduce
any contribution by other aerosols, although there may be
times of the year when the latter contribute significantly. We
measure the sensitivity of our optimal solution to this
‘contamination’ in section 5.5, where we calculate the
model AOT using a multi-component aerosol distribution
in addition to dust.
[19] We also use AOT retrievals from the advanced very

high resolution radiometer (AVHRR) from 1997 to 2000.
Here the AOT is derived from a two-channel retrieval
algorithm [Mishchenko et al., 1999; Geogdzhayev et al.,
2002], which has been validated against in situ measure-
ments at Sable Island [Mishchenko et al., 2003] and long-
term sun-photometer measurements over oceans [Liu et al.,
2004]. AOT retrievals exceeding unity are reset to this value
to minimize cloud contamination, which introduces a low
bias. A third measurement of AOT is provided by TOMS
from 1997 to 2000 [Torres et al., 2002]. The TOMS
retrieval overestimates the AOT compared to other satellites
and AERONET [Myhre et al., 2004], but its combination
with AVHRR may offset the low bias that results from the
cloud screening algorithm of the latter. The optical thickness
retrieved by AVHRR and TOMS are at 550 nm and 380 nm,
respectively, in comparison to the 550 nm AOT measured

Table 1. Data Used to Constrain the Dust Cycle in This Study and Its Temporal Coverage

Data Set Reference Period

AOT AERONET Holben et al. [2001] 1990s–Present
AOT AVHRR Mishchenko et al. [1999]; Geogdzhayev et al. [2002] 1997–2000
AOT TOMS Torres et al. [2002] 1997–2000
SURFACE CONCENTRATION Prospero [1996] 1980– late 1990s
DEPOSITION (DIRTMAP) Tegen et al. [2002]; Kohfeld and Harrison [2001] 1980–mid 1990s
DEPOSITION (GINOUX) Ginoux et al. [2001] 1980s
SIZE DISTRIBUTION Holben et al. [2001]; Dubovik et al. [2002] 1990s–Present
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by AERONET and computed by the AGCM. We neglect the
change of AOT between these two wavelengths. The
difference is small for large dust particles, but can be larger
for small far-traveled particles [Chiapello et al., 2000]. In
comparing to the satellite retrievals, we use regional aver-
ages because these allow a better comparison to the AGCM
which computes grid box averages. Moreover, a regional
comparison reduces the effect of transport errors where the
AGCM winds depart from actual values. We select regions
whose aerosol load is dominated by mineral dust, because
the retrievals do not distinguish different aerosol species.
We use the clear sky AOT computed by the model given
that the satellite and surface observations of AOT are
computed using a cloud masking algorithm. Additionally,
the nonsphericity of dust particles introduces an uncertainty
to the retrieved AOT [Mishchenko et al., 1995]. This
problem cannot be solved with either AVHRR or TOMS
data [Mishchenko et al., 2003]. Through radiance measure-
ments at multiple wavelengths, both MODIS and Multi-
angle Imaging Spectroradiometer (MISR) retrievals allow
more accurate estimate of AOT and identify the aerosol type
with greater confidence [Chu et al., 2002; Remer et al.,
2002]. In addition, MISR retrieves parameters related to
particle shape [Kahn et al., 2001]. As these data sets extend
over a longer period, they will provide a useful additional
constraint on the magnitude of the dust load, although we
do not include them in the present study.
[20] We use surface dust concentration measured by the

University of Miami at nearly two dozen stations worldwide
from the early 1980s to the late 1990s [Savoie and
Prospero, 1977; Prospero, 1996]. In addition, we use
sediment trap measurements of ocean deposition during
the early 1980s to mid-1990s from the Dust Indicators
and Records of Terrestrial and Marine Palaeoenvironments
(DIRTMAP) [Kohfeld and Harrison, 2001]. Measurement
errors in the locations of high sedimentation considered in
this study are on the order of 25%, although there are
additional sources of uncertainty. We use the compilation by
Tegen et al. [2002], which selects measurements at near-
uniform depths to minimize any signal by fluvial inputs or
hemipelagic reworking [Yu et al., 2001]. Most DIRTMAP
values are based upon several seasons of measurements,
although a few have records as short as 50 days. Nearby
stations within the same AGCM grid box were averaged for
comparison to model values, which removes some of the
effect of short records. Only annual averages are compared
to the model, which obviates distortion of the seasonal cycle
by the lag between deposition at the ocean surface and
biological transport to the sediment trap [Bory et al., 2001].
Complementary deposition measurements compiled by
Ginoux et al. [2001] provide additional data for a longer
period during recent decades.
[21] Finally, we compare the size distribution retrieved by

AERONET [Dubovik and King, 2000; Dubovik et al.,
2002], after interpolation to model size categories using
the effective radius. Other aerosols are discernible within
the accumulation mode, as indicated by the local maximum
in the size distribution for radii smaller than roughly 0.2 mm
[see Miller et al., 2006, Figure 8]. To exclude other aerosol
species, we restrict the comparison of the model and
observed size distribution to particles with radii greater than
0.2 mm. A potentially larger problem is the bias between

the model monthly size distribution and the observed
distribution, which is restricted to dusty days with AOT
greater than 0.5 in order to minimize contamination
by aerosols other than dust [Dubovik et al., 2002].
However, as we note in section 5.3, the optimal solution
is nearly unchanged when the size distribution retrievals
are excluded.

4. Methodology

[22] In order to constrain the global dust cycle we
formulate a statistic F that represents the error between
the model and the observations:

F2 �

1

M

XM
i¼1

Xm
i � X o

i

� �2
S2

; ð3Þ

where S is a normalization factor:

S2 ¼ 1

2M

XM
i¼1

Xm
i

� �2þXM
i¼1

X o
i

� �2" #
; ð4Þ

Xi
o and Xi

m are the observed and modeled values,
respectively, and the sum is over all M observations. The
subscript i varies according to both measurement location
and climatological month. The normalization S is chosen so
that the errors corresponding to different data sets are of
comparable order; F of order 1 indicates no agreement
between the model and the observations.
[23] The error corresponding to individual observations is

often weighted by the inverse of the observational uncer-
tainty [Press et al., 1992, chapter 15], so that more accurate
observations make a larger contribution to the total error F
and provide a stronger constraint upon the minimum value.
In our case, the observations are climatological values
where interannual variability typically makes a larger con-
tribution to uncertainty than measurement error (although
the latter is poorly documented). This variability generally
increases with the magnitude of the observed dust load. For
this reason, we decline to weight by the inverse of the
uncertainty, which would have the undesired effect of
emphasizing observations during the least dusty season,
when measurement error is comparatively strong.
[24] Equation (3) predominantly weights stations near the

source where the dust concentration is larger. This is a
reasonable weighting, given that model results at far stations
are influenced more strongly by the model’s error in
transport and deposition, which can distort the inferred
emission. (For a heuristic example of how remote observa-
tions can distort the estimated emission as a result of
transport and deposition errors, see Appendix B.) However,
were our model applied to iron uptake by ocean biology
(e.g.), which is sensitive to dust deposition in iron-limited
ocean regions that are typically far from the source, a
weighting which emphasizes remote stations would be more
appropriate.
[25] As noted in section 2, we assign separate values of

the product CF(r) for clay and silt, which determine the
emitted dust mass for a given distribution of wind speed
(see equation (2)). We simultaneously vary the clay and silt
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values of this product (equivalent to varying clay and silt
emission), and search for a minimum of the error F, using
(3). Although emission corresponding to the minimum
error can be identified using an analytic formula (as in
Appendix A), our method allows us to sample the error in
the neighborhood of the minimum, which reveals whether
the minimum is sharply defined or part of a broad region
where the error varies slowly and a wide range of emission
results in nearly optimal agreement with the observations.
[26] Since there is no dust radiative feedback, the dust

load increases linearly with emission. Therefore, we can
vary clay and silt emission and search for the minimum
error F given a single integration of the model. We carried
out this minimization separately for each of the four
preferred source functions described in section 2. Note that
the observations we use as a constraint consist of many
different physical quantities. Thus, while we minimize the
model error by varying emission, in fact we are really
constraining the entire dust cycle, including the load and
deposition, rather than emission per se. One consequence is
that the optimal value of emission that we derive is sensitive
to uncertainties in other aspects of the dust cycle (such as
AOT), whose measurements we include as a constraint.
[27] Although silt particles are transported as three sepa-

rate size categories in our model, we have chosen to
constrain only the total silt emission. This is because the
larger silt categories make only a small contribution to the
model variables that are compared against observations.
Figure 2 shows the clay and silt contributions to each of
these variables. (The contributions are normalized, so that
different data types can be plotted together despite differing
units.) Clay makes the dominant contribution to AOT, while
surface concentration and deposition are dominated by silt.
For each data type, the clay and silt contributions are nearly

colinear. The ratio of clay to silt remains nearly unchanged
as the dust plume disperses globally, even as the total
concentration drops. This requires that both size categories
have similar lifetimes and removal rates, indicating the
absence of larger silt particles that are removed preferen-
tially by dry deposition. Thus, the observations only weakly
constrain emission of the largest silt particles, even at
observing locations that are upwind and closest to the
source region where the concentration is largest. By opti-
mizing the total silt emission, we are effectively constrain-
ing the smallest silt particles, and assuming that the emitted
mass in the larger categories is identical, consistent with the
size distribution of emission assumed by Tegen and Fung
[1994].
[28] Each integration is of 5 years duration, a time long

enough to provide robust, statistically significant differences
between experiments, but short enough to be computation-
ally efficient. Sea surface temperature (SST) observed
during the period 1997 to 2001 is used as a lower boundary
condition, a period of time which overlaps with the satellite
retrievals of AOT, although not necessarily with the other
measurements. The use of observed SST forces the model,
which controls the dust cycle, toward the observed circula-
tion [Bretherton and Battisti, 2000]. Because we only carry
out a single experiment for each preferred source, the
correspondence of the model and observed circulation will
be smaller than for an ensemble of simulations. However,
the limited correspondence probably does not contribute
significant uncertainty to the climatologies of the model and
observation that we compare.
[29] In the next section, we derive the sensitivity of the

optimal emission to different subsets of the data used to
construct the error F. The ALL comparison makes use of all
observations that have at least three years of data available.
The exception is the DIRTMAP deposition data set that is
available for one year at most of the locations. The ALL
comparison includes some observing sites that are not
downwind of any source and do not offer a strong constraint
for dust. Moreover, the ALL comparison is biased toward
dust sources from the Sahara more than Asia given that
there are more samples downwind of the former. The
RELEVANT comparison addresses this issue by weighting
observations so that each source region contributes equally
to the error F. Also, the RELEVANT case uses only those
locations that are dominated by dust and have at least five
years of data (except for DIRTMAP), so that the climatol-
ogy is more robust. Because (3) emphasizes those stations
that are closer to the source, we also consider the EQUAL
case, defined in section 5.3, that gives equal emphasis for
both close and far stations.
[30] Given that modelers often constrain their dust cycle

to match observations in a particular region, we compare the
global emission constrained by regional subsets of the data.
The AFRICA experiment considers the western Sahara
source and observations downwind. The ASIA experiment
includes the Chinese deserts and observations over the
North Pacific Ocean. The ARABIA experiment includes
the Arabian Peninsula and the Arabian Sea. Both the
AUSTRALIA and NAMERICA experiments are restricted
to observations from the continents of Australia and North
America as well as downwind oceanic regions, respectively.
Finally, the BARBADOS experiment includes data only

Figure 2. The contribution of clay and silt particles to
model output at all observing locations. Each data set is
normalized according to (A1).
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Table 2. Locations Used in Each Experiment to Constrain the Modela

Location ALL RELEVANT AFRICA ASIA ARABIA AUSTRALIA N. AMERICA

AERONET
50.5E 26.3N Bahrain Bahrain
59.5W 13.2N Barbados Barbados Barbados
64.7W 32.4N Bermuda
22.9W 16.7N Capo Verde Capo Verde Capo Verde
146.1E 34.8S Coleambally
17.0W 14.4N Dakar Dakar
104.4E 43.6N Dalanzadgad Dalanzadgad Dalanzadgad
132.9E 12.7S Jabiru
155.6W 19.5N Mauna Loa Mauna Loa Mauna Loa
166.9E 0.5S Nauru
34.8E 31.9N Nes Ziona Nes Ziona
117.9W 34.9N Rogers Dry Lake
115.3E 32.0S Rottnest Is.
34.8E 30.7N Sede Boker Sede Boker Sede Boker
106.9W 34.4N Sevilleta Sevilleta Sevilleta
46.4E 24.9N Solar Village Solar Village Solar Village
55.2W 5.8N Surinam
149.6W 17.6S Tahiti
111.0W 32.2N Tucson

AVHRR
55–70W 12–24N Caribbean Caribbean Caribbean
15–45W 12–32N Sub. Atlantic Sub. Atlantic Sub. Atlantic
50–70W 8–24N Arabian Sea Arabian Sea Arabian Sea

TOMS
55–70W 12–24N Caribbean Caribbean Caribbean
15–45W 12–32N Sub. Atlantic Sub. Atlantic Sub. Atlantic
15E–25W 16–32N Sahara Sahara Sahara
50–70W 8–24N Arabian Sea Arabian Sea Arabian Sea

SURFACE CONCENTRATION
59.5W 13.2N Barbados Barbados Barbados
64.7W 32.4N Bermuda Bermuda
52.3W 4.9N Cayenne
126.5E 33.5N Cheju Cheju Cheju
162.3E 11.3N Enewetak
159.3W 3.9N Fanning
179.2W 8.5S Funafuti
128.3E 26.9N Hedo
20.3W 63.4N Heimaey
16.5W 28.3N Izaña Izaña Izaña
9.9W 53.3N Mace Head
80.3W 25.8N Miami Miami Miami
177.4W 28.2N Midway Midway Midway
167.0E 0.5S Nauru
168.0E 29.1S Norfolk Is. Norfolk Is.
157.7W 21.3N Oahu Oahu Oahu
159.8W 21.3S Rarotonga
170.6W 14.3S Samoa
167.0E 22.2S Yate Yate

DEPOSITION (GINOUX)
162.3E 11.3N Enewetak
159.3W 3.9N Fanning
6.5E 45.5N French Alps
177.4W 28.2N Midway Midway Midway
167.0E 0.5S Nauru
167.0E 22.2S New Caledonia New Caledonia
172.8E 34.5S New Zealand
168.0E 29.1S Norfolk Is. Norfolk Is.
157.7W 21.3N Oahu Oahu Oahu
159.8W 21.3S Rarotonga
174.1E 52.9N Shemya
2.3E 41.8N Spain
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from this island along with satellite retrievals of Caribbean
AOT. The locations used to constrain the model in each
experiment are listed in Table 2 and in Figure 3.

5. Results

5.1. Optimal Dust Distribution

[31] Before showing how each data set constrains the
optimal dust cycle, we present an example of the aerosol
load that results from this optimization. A more extensive,
regional comparison of the optimal dust cycle to each data
set is presented in Miller et al. [2006]. The optimal aerosol
load calculated using the GINOUX source is shown in
Figure 4. The optimal case is identified using the combina-
tion of data sets listed in Table 1, and measurement
locations listed in Table 2, as described in section 5.3. In
order that each source region influence the optimal solution
equally, we use the weights corresponding to the RELE-
VANT case. Figure 4 shows an aerosol plume extending
across the Atlantic from North Africa during most seasons.
Saharan dust is transported over the Cape Verde Islands

throughout the year, while easterly trade winds during the
winter bring additional dust from the Sahel [Chiapello et al.,
1995]. As the Northern Hemisphere (NH) summer
approaches and the Intertropical Convergence Zone moves
northward, the Trade winds that transport the dust shift
poleward as well, so that AOT peaks at a higher latitude
during this season [Swap et al., 1996]. Near the coast of
eastern Asia, during the NH spring, there is a plume
extending into the Sea of China and North Pacific, associ-
ated with dust transported from the Taklimakan and Gobi
deserts. There is also dust over the Australian continent
during the Southern Hemisphere (SH) summer, which is
the active dust season in this region [Prospero et al., 2002].
The global, annual-average load is dominated by silt
particles, at 18.6 Tg versus 5.0 Tg for clay, as shown for
the ‘RELEVANT’ case in Figure 5.

5.2. Error % for Individual Data Sets

[32] We calculate the optimal dust distribution identified
by each data set using the GINOUX preferred source
prescription and the RELEVANT subset of observations.

Figure 3. The locations and regions used to constrain the model. The dotted regions indicate the
domain for areal averages of the satellite retrievals. The square is AERONET, the triangle is Miami
surface concentration, the circle is Ginoux deposition, the plus is DIRTMAP, and the cross is AERONET
size distribution.

Location ALL RELEVANT AFRICA ASIA ARABIA AUSTRALIA N. AMERICA

DIRTMAP
48 Sites 10 Sites 12 Sites 5 Sites 4 Sites 3 Sites

SIZE DISTRIBUTION
50.5E 26.3N Bahrain Bahrain
59.5W 13.2N Barbados Barbados Barbados
64.7W 32.4N Bermuda
22.9W 16.7N Capo Verde Capo Verde Capo Verde
17.0W 14.4N Dakar Dakar
104.4E 43.6N Dalanzadgad Dalanzadgad Dalanzadgad
34.5E 30.5N Sede Boker Sede Boker Sede Boker

aThe BARBADOS experiment uses only Barbados station data and the Caribbean regional average for the satellite retrievals.

Table 2. (continued)
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Figure 4. Column dust load (mg m�2) for (a) DJF, (b) MAM, (c) JJA, and (d) SON.

Figure 5. The optimal global dust load for each experiment (annual average). The light and dark
shading shows the optimal clay and silt load, respectively. The number above each bar is the optimal total
load. The optimal silt value is also given where it is non-zero, and the clay load is the difference with
respect to the total. Each of the nine experiments are subdivided according to the preferred source
prescription, where G is GINOUX, T is TEGEN, Z1 is ZENDER1, and Z2 is ZENDER2. The
experiments AUS and NAM are AUSTRALIA and NORTH AMERICA, respectively.
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Figure 6 shows the error F based upon AOT observations
from AERONET, AVHRR, and TOMS. Each panel shows
contours of the error (denoted by solid lines) as clay and silt
emission are varied along the horizontal and vertical axis,
respectively. The dotted lines represent total emission. The
optimal value indicated by each individual data set is given
by the minimum in the error F and is marked by the black
triangle. This figure shows that the optimal annual emission
for all three AOT data sets is around 450 Tg of clay without
any silt emission.
[33] A number of factors contribute to uncertainty in our

estimate of the optimal emission. The observations are
subject to measurement error and their climatology is
uncertain due to interannual variability. We estimate the
latter in Appendix A. Below, we estimate the effect of our
subjective selection of observing stations and data types

upon the optimal solution by considering different combi-
nations. Because these combinations are not exhaustive, we
also shade Figure 6 in the vicinity of the optimal solution to
indicate values of the error F that are within 5% of the
minimum. This criterion is arbitrary. Nonetheless, emission
within the shaded region is only slightly less consistent with
the observations than the optimal solution.
[34] Both surface concentration from the University of

Miami and deposition from DIRTMAP indicate that the
optimal distribution corresponds mostly to silt emission
with little clay (Figure 7). Their optimal values are approx-
imately 1,600 Tg. The deposition compiled by Ginoux
constrains the optimal emission to consist entirely of clay
(Figure 7b). The unusually small error and restricted range
of the optimal solution for this data set may stem from the
fact that only two locations satisfy the RELEVANT criterion

Figure 6. Model error F (solid contours), according to (a) AERONET, (b) AVHRR, and (c) TOMS
AOT for the RELEVANT experiment using the GINOUX source. The dotted lines mark total emission.
The optimal value is marked by the black triangle. The shading indicates values of the error F that are
within 5% of the minimum.

D06207 CAKMUR ET AL.: CONSTRAINING THE GLOBAL DUST CYCLE

10 of 24

D06207



of containing at least 5 years of measurements (Table 2). The
model can match the observations closely at these two
locations, despite unrealistic behavior elsewhere that is not
penalized. Only the size distribution indicates non-zero opti-
mal values of both clay and silt simultaneously (Figure 7d). It
indicates an annual optimal emission of around 2,100 Tg,with
200 Tg from clay and 1,900 Tg from silt.

5.3. Error %T for Combined Data Sets

[35] Here, we compute the consensus optimal emission
by minimizing the error constructed from all seven data sets
listed in Table 1. For each data set (denoted by j) we
calculate the root mean square error Fj according to (3).
Then the total or combined error FT is:

FT ¼
X7
j¼1

wjFj ð5Þ

where the weights wj assigned to each data set sum to unity.
We allow observations of AOT, surface concentration,
deposition and size distribution to contribute equally to the
total error. Because there are two deposition data sets, each
is weighted half as much compared to surface concentration.
We also decide somewhat arbitrarily to weight AERONET
measurements of AOT twice as much as the TOMS and
AVHRR retrievals. Our weights for each data set are given
in Table 3.
[36] The optimal emission that minimizes the total error

FT is listed for various experiments in Figure 8. For the
GINOUX source (and RELEVANT set of observations), the
optimal annual emission is 1,534 Tg, comprised of 188 and
1,345 Tg of clay and silt emission, respectively. This is in
the middle range of global emission calculated by other dust
models [Ginoux et al., 2001; Tegen et al., 2002; Mahowald
et al., 2002; Zender et al., 2004]. However, our model
requires higher values of emission to match the observations

Figure 7. As in Figure 6, according to (a) University of Miami surface concentration, (b) Ginoux
deposition, (c) DIRTMAP deposition, and (d) AERONET size distribution.
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when other source prescriptions are used. Optimal emission
for all other sources exceeds 2200 Tg and for the TEGEN
source is as high as 2600 Tg (Figure 8). The contribution
of each region to the global optimal emission is listed in
Figure 9. Global emission is greater with the TEGEN source
compared to GINOUX as a result of greater emission over
Australia and Central Asia, as anticipated from the erosion
susceptibility associated with each source prescription
(Figure 1). Note that due to their short observing record,
no locations near Australia constrain the optimal dust cycle
in the RELEVANT case. (We include constraints upon
Australian emission in section 5.4.)
[37] The error F with respect to each data set resulting

from the consensus optimal solution is listed in Table 4.
(The errors are calculated for each source prescription,
but for the GINOUX case, the error can also be derived
from Figures 6 and 7 using the optimal clay and silt
emission identified in Figure 8.) The error associated with
the consensus optimal solution is roughly comparable for
each individual data set. The exception is the size
distribution retrievals, where the resemblance is slightly
worse.
[38] Clay makes a much smaller contribution than silt to

the optimal emission listed in Figure 8. For the RELEVANT

case, clay contributes between 12 and 14% of the total,
depending upon the source prescription. Clay also makes
a relatively small contribution to the global load, according
to Figure 5. For the RELEVANT case, the proportion of
silt to clay ranges from 3.4 to 4.0 parts, depending upon
the source. These values are substantially higher than the
silt proportion in other current models, which range
from 0.4 to 1.6 [Miller et al., 2004, Table 1]. Although
the possibility that current models underestimate silt emis-
sion has been suggested previously by the size distribution
observed during the Puerto Rico Dust Experiment (PRIDE
[Reid et al., 2003; Maring et al., 2003]), the optimal
fraction of silt remains large even if the size distribution
is excluded from the optimization (see below). The large
silt proportion compared to other models results from
optimizing the model with different observing sites and
data sets.
[39] Figure 10 shows the total error FT as a function of

clay and silt emission. For all but one source prescription,
the minimum error is not sharply defined; global emission
as large as 3500 Tg corresponds to an error that is within
5% of the actual minimum. This suggests that the optimal
emission may be sensitive to modest changes to our choice
of observations or our definition of the error. If we use all

Table 3. Weighting of Each Individual Data Set Used to Compute the Total Error in Equation (5)

Experiment AERONET AVHRR TOMS SURFa DEPO (G)b DIRTMAP SIZEc

ALL 1/8 1/16 1/16 1/4 1/8 1/8 1/4
RELEVANT 1/8 1/16 1/16 1/4 1/8 1/8 1/4
AFRICA 1/8 1/16 1/16 1/4 0 1/4 1/4
ASIA 1/4 0 0 1/4 1/8 1/8 1/4
ARABIA 1/6 1/12 1/12 0 0 1/3 1/3
AUSTRALIA 1/3 0 0 1/3 1/6 1/6 0
N. AMERICA 1/3 0 0 1/3 0 0 1/3
BARBADOS 1/6 1/12 1/12 1/3 0 0 1/3

aUniversity of Miami surface concentration.
bDeposition compiled by Ginoux et al. [2001].
cAERONET size distribution.

Figure 8. As in Figure 5, but for global annual emission.
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Figure 9. Regional emission of soil dust aerosol (Tg), for the globally optimal RELEVANT solution.
The experiments with the GINOUX, TEGEN, ZENDER1, and ZENDER2 sources are denoted by GIN,
TEG, ZEN1, and ZEN2, respectively. Each bar is divided into seasonal totals for DJF (bottom, light),
MAM (above, dark), JJA (above, light), and SON (top, dark). The annual total is given at the top of each
bar. The vertical lines bracketing the annual average range between one standard deviation above and
below. The Sahara/Sahel average consists of Northern Hemisphere Africa grid boxes. Central Asia is
defined between 25–90�E, 32–53�N; and Arabia between 35–60�E (but east of the Red Sea) and 12–
36�N.

Table 4. Total Error and Error With Respect to Each Data Set, Corresponding to the Consensus Optimal Solution Calculated Using All

Data Sets

Preferred Source AERO AVHRR TOMS SURFa DEPO (G)b DIRTMAP SIZEc TOTALd

RELEVANT
Ginoux 0.50 0.59 0.59 0.47 0.18 0.23 0.82 0.51 ± 0.22
Tegen 0.70 0.57 0.65 0.47 0.85 0.49 0.98 0.69 ± 0.21
Zender1 0.73 0.56 0.64 0.66 0.74 0.89 0.95 0.77 ± 0.13
Zender2 0.55 0.56 0.56 0.48 0.69 0.60 0.86 0.64 ± 0.15

ALL
Ginoux 0.53 0.57 0.54 0.72 0.53 0.40 0.76 0.62 ± 0.13
Tegen 0.69 0.57 0.58 0.74 0.80 0.62 0.91 0.75 ± 0.13
Zender1 0.72 0.56 0.58 0.81 0.62 0.87 0.88 0.77 ± 0.11
Zender2 0.55 0.55 0.52 0.71 0.59 0.65 0.77 0.66 ± 0.09

EQUAL
Ginoux 0.66 0.69 0.65 0.68 0.26 0.51 0.79 0.63 ± 0.16
Tegen 0.63 0.69 0.66 0.63 0.73 0.37 0.82 0.66 ± 0.13
Zender1 0.59 0.63 0.62 0.63 0.71 0.47 0.80 0.66 ± 0.10
Zender2 0.56 0.63 0.63 0.59 0.61 0.39 0.78 0.62 ± 0.12

aUniversity of Miami surface concentration.
bDeposition compiled by Ginoux et al. [2001].
cAERONET size distribution.
dThe total error plus or minus the standard deviation with respect to the individual data sets.
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available observations (the ALL experiment defined in
section 4), including those in non-dusty locations, then
Figure 8 shows that the optimal global emission rises by a
few hundred Tg compared to the RELEVANT case.
[40] In the RELEVANT experiment, upwind stations,

where the dust concentration is highest, have the greatest
potential influence upon the error (3). As an alternative
weighting, we redefine the error F so that each observation
has the same potential to contribute (the EQUAL experi-
ment). We recompute the error F by normalizing so that the
error at each station is of the same potential magnitude:

F2 � 1

2M

XM
i

Xm
i � X o

i

� �
1
2
Xm
i þ X o

ið Þ

" #2

ð6Þ

The denominator ensures that F is non-dimensional, and
that stations with the same fractional error make a similar

contribution to the error F, even if there is a large difference
in concentration between the stations. For all source
prescriptions, the total error remains nearly unchanged
(Table 4), but the optimal emission increases by a few
hundred Tg compared to the RELEVANT case, especially
the emission of clay particles (Figure 8). For the GINOUX
source, the optimal clay emission in the EQUAL case is
460 Tg/yr, more than twice the estimate from the
RELEVANT case. By allowing observations with the same
fractional error to make similar contributions to the error F,
we give increased emphasis to stations where the load is
dominated by clay particles due to the large distance from
the source region. The increase in clay emission needed to
match the observations at distant stations suggests that dust
transport might be too slow, or that the model’s wet
deposition (which is the primary removal mechanism of
clay) is too high. Nonetheless, we argue in Appendix B that
stations near the source are a better constraint upon

Figure 10. As in Figure 6, but for the total error based upon the (a) GINOUX, (b) TEGEN,
(c) ZENDER1, and (d) ZENDER2 preferred source prescriptions.
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emission, because their agreement with the model is not
distorted by errors in transport or deposition.
[41] As an additional sensitivity test, we remove one data

set from the calculation of the total error FT, before
computing the optimal solution. Table 5 shows that for
the GINOUX source and RELEVANT set of locations, total
emission ranges from 1406 Tg, when AERONET size
retrievals are excluded, to 1631 Tg in the absence of the
deposition measurements compiled by Ginoux. Total emis-
sion remains within roughly 10% of the 1534 Tg computed
using all data sets. This variation is small compared to the
range of optimal emission computed using a single data
set (shown in Figures 6 and 7), demonstrating that the
combination of data sets results in a much more robust
estimate. While the total emission can either increase or
decrease due to exclusion of a single data set, clay emission

increases in all but one case, although by no more than
roughly 20%.
[42] Modelers often constrain their dust model to match

observations in a single region. Here, we recompute the
global optimal emission using observations downwind of a
single region. Not all the data sets are available in each
region (Table 2). For instance, deposition compiled by
Ginoux is unavailable downwind of AFRICA, and satellite
retrievals of AOT are missing downwind of ASIA due
to persistent cloud cover. In an effort to compensate, we
accept stations where the climatology is shorter than the five
years required for inclusion in the RELEVANT case. These
additional stations are listed in Table 2. Figure 8 shows that
global emission is very sensitive when constrained by
observations from only a single region. For the TEGEN
and ZENDER preferred sources, for example, global emis-
sion varies by more than threefold depending upon whether
it is constrained using observations from Africa or Asia.

5.4. Regional Optimization

[43] So far, we have used observations to constrain the
global value of C in (2) along with the emitted fraction of
clay and silt particles. These parameters presumably have
regional variations, reflecting variations in the distribution
of soil particle size, for example. In this section we
constrain these parameters for each major source region
separately. For example, we use observations from locations
downwind of Africa to optimize emission only for African
sources. (In contrast, in the AFRICA case in the previous
section, we used locations downwind of Africa to optimize

Table 5. Optimal Emission E With Individual Contributions From

Clay Ec and Silt Es, When a Single Data Set is Excluded From the

Calculation of the Minimum Total Error FT

Excluded Data E Ec Es FT

AOT (AERONET) 1546 229 1317 0.52
AOT (AVHRR) 1547 202 1345 0.51
AOT (TOMS) 1527 182 1345 0.51
Surface Concentration 1596 195 1401 0.52
Deposition (Ginoux) 1631 202 1429 0.51
Deposition (DIRTMAP) 1386 209 1177 0.50
Size (AERONET) 1406 229 1177 0.40

Figure 11. As in Figure 9, but for optimal emission derived by constraining the dust cycle for each
region separately.
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global emission.) Note that constraining the model with
observations not only constrains poorly-known parameters
but has the unfortunate effect of compensating for model
errors. This effect becomes more problematic as we increase
the number of regions.
[44] Figure 11 shows the optimal emission for each

region when constrained only by observing sites that are
downwind. For the GINOUX and TEGEN sources, the
global sums based upon constraining each region indepen-
dently are in much better agreement than when emission is
constrained globally (see Figure 9). To a certain extent, this
increased agreement is because constraining each region
separately compensates for regional differences in the
source prescriptions. For example, in the RELEVANT
experiment, the TEGEN source is substantially more pro-
ductive than the GINOUX source over Australia, while the
GINOUX source is more productive over Africa (Figure 9).

Table 6. Optimal Value of C (Normalized by the Global Optimal

Value at the Bottom) and the Ratio of Silt Emission Es to Clay

Emission Ec for Each Regiona

Experiment

GINOUX TEGEN ZENDER1 ZENDER2

C Es/Ec C Es/Ec C Es/Ec C Es/Ec
Regional

AFRICA 1.17 6.7 1.71 9.4 1.93 16.1 1.70 17.2
CENTRAL ASIA 1.00 7.2 0.36 8.4 0.44 6.7 0.51 6.5
EAST ASIA 1.00 7.3 0.36 8.2 0.44 6.6 0.51 6.5
ARABIA 0.90 6.6 0.65 5.0 0.87 6.7 0.91 6.4
AUSTRALIA 0.43 0 0.13 0 0.44 0 0.26 0
NAMERICA 1.69 0.4 2.57 8.9 1.60 1.2 1.59 1.9

Globalb

9.71 7.1 15.27 6.8 29.37 6.3 5.12 7.3
aOptimization of each region uses only sources downwind of that region.
bFor the global case (Figure 10), C is not normalized and has units of

kg s2/m5.

Figure 12. As in Figure 10, but including contributions to AOT from model estimates of sulfate and sea
salt, along with black and organic carbon, in addition to dust.
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Constraining Australian and African dust separately with
observations offsets some of the difference in the source
prescriptions. However, because emission is inferred indi-
rectly by matching observations of other physical quantities
(e.g. AOT), the optimal emission need not be identical
among the four source prescriptions. This may explain
why global emission corresponding to the ZENDER sour-
ces remains one and a half times larger than the GINOUX
and TEGEN values (Figure 11).
[45] Table 6 shows the value of C normalized by the

value from the global optimization (Figure 10). The results
show that the most productive source region for a given
wind speed (indicated by a higher value of C) is Africa
(excluding North America, where total emission is much
smaller). In the GINOUX and TEGEN experiments, Africa
and Asia emit similar ratios of silt to clay, whereas in the
ZENDER experiments, silt emission is largest for Africa.
These regional variations of C along with the silt and
clay fractions may be spurious, existing only to compensate
for errors in AOT and other quantities in our model.
Whether these inferred regional variations are valid
should be determined by measurement of the emitted size
distribution.

5.5. Additional Aerosols

[46] As noted in section 3, the locations for comparison
have been selected in order to minimize the presence of
other aerosols. Nevertheless, there can be times of the year
when the dust load does not constitute the dominant
contribution to AOT. To address this contribution by other
species we use output from a multi-component aerosol
model that calculates the distribution of sulfate, sea salt,
black and organic carbon [Koch, 2001; Koch et al., 2006;
Koch and Hansen, 2005].
[47] When the contribution of other aerosols to AOT is

included, the optimal distribution corresponds to no clay
emission for all source prescriptions (Figure 12). Other
aerosols contribute to the overall AOT and obviate the need
for clay aerosols. For example, for the GINOUX source,
the optimal clay emission is zero, although emission up to
150 Tg/yr is consistent with departures from the minimum
error up to 5%. Note that the use of a model to estimate the
AOT contribution by other aerosol species introduces
an additional uncertainty into the optimization. This uncer-
tainty emphasizes the value of multi-spectral satellite
retrievals that distinguish the contribution by dust with
greater accuracy.

6. Conclusions

[48] The magnitude of the terrestrial dust cycle remains
uncertain, in part because there are few direct observations
of soil particles entering the atmosphere. Extrapolation of
observed ocean deposition and measurements over specific
source regions indicate a range of global emission spanning
over two orders of magnitude. Here, we constrain global
emission by comparing the dust cycle calculated by the
GISS AGCM to many data types including AOT, surface
concentration, deposition, and size distribution at a world-
wide array of stations. The AGCM dust model is described
in a companion article [Miller et al., 2006], which includes a
more detailed regional comparison to the observations here.

[49] In order to constrain the dust cycle, we employ a
weighted sum of the squared difference between the model
and observed values. We minimize this sum to identify the
magnitude of the global dust cycle and emission that is in
optimal agreement with the observations. This function
favors dustier stations close to the source, which is advan-
tageous because model transport and deposition errors
increasingly magnify the discrepancy of the model with
respect to observations as dust travels downwind. In Ap-
pendix A, we show that clay is constrained mainly by AOT
and the AERONET size distribution, while surface concen-
tration, deposition, and the size distribution determine the
silt contribution (see also Figure 2).
[50] When considered individually, the different data sets

point to contrasting optimal values of total emission
(Figures 6 and 7). Thus, the magnitude of the dust cycle
is very sensitive to the data set used as a constraint, if only
one data set is chosen. In contrast, a combination of data
sets identifies a consensus optimal solution that generally
agrees with all the observations (Table 4), and is much
less sensitive to the exclusion of a particular data set
(Table 5). For the GINOUX source prescription and the
RELEVANT subset of measurements, the global annual
emission of particles between 0.1 and 8 mm is 1,534 Tg,
comprised of 188 Tg of clay and 1,345 Tg of silt. The total
emission is comparable to current model estimates [Zender
et al., 2004], although our clay fraction (comprised of
particles with radius less than 1mm) is much smaller.
Although an increase in the far-traveled silt fraction has
been suggested previously by the size distribution measured
downwind of African sources, for example, during PRIDE
[Reid et al., 2003; Maring et al., 2003], a large silt fraction
is indicated by a combination of the data sets we considered,
and remains valid even if the size distribution is eliminated.
The relatively small model clay fraction consistent with the
observations suggests that clay particles are less available
for emission than previously assumed by models. An
alternative interpretation is that clay is not removed quickly
enough in our model as the particles travel away from the
source, although this is contradicted by the excessive
deposition diagnosed during model transport over the
Atlantic [Miller et al., 2006]. We have tried to minimize
the effect of deposition errors by defining the error F
according to (3), which emphasizes measurements near
the source.
[51] Uncertainty in our optimal solution results from a

number of factors. In Appendix A, we estimate that mea-
surement error and interannual variability, which leads to
uncertainty in the observed climatology, contribute less than
a few percent to the uncertainty of the optimal global and
annual emission. By far the largest contribution to uncer-
tainty results from our prescription of dust source regions.
Three additional prescriptions result in optimal emission
over 2200 Tg and as high as 2600 Tg. In general, this range
indicates that while the environment favorable to dust
emission is recognized [Prospero et al., 2002], it remains
unsettled how best to specify this environment in a model.
Smaller uncertainties of a few hundred Tg result from
changing the weighting of individual observations, or
excluding a single data set from the evaluation, but these
can result in global, annual emission as large as 3000 Tg
(Figure 8). This value is substantially larger than emission
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estimates from other recent models, but the associated dust
cycle remains in good agreement with the observations.
[52] While optimization is intended to constrain model

emission, it may inadvertently compensate for model
errors. The clay load constrained by AOT will be sensitive
to our use of particle optical properties of Saharan dust for
all source regions. The optimal dust cycle we identify will
be altered by the use of observed winds, as opposed to
AGCM values. Luo et al. [2003] find that their model’s
emission is dependent upon their particular choice of
reanalysis winds, especially in the Southern Hemisphere.
In our model, the error is lowest with the GINOUX
representation of preferred sources (for the RELEVANT
set of measurements). However, Zender et al. [2003] find a
different ranking, based upon a different model and
transport, albeit with a smaller array of observations. To
some extent, the sensitivity to transport and deposition in
our model is reduced by the precedence of upwind
observations in our error definition (3). Nonetheless, the
sensitivity of the optimal dust cycle to its model represen-
tation remains an uncertainty that can be quantified only
by comparison of the dust cycle calculated by other
models to the same observations. Additional uncertainty
results from our attempt to match the observations while
excluding anthropogenic sources of dust. Whether the
contribution of the latter is important remains under debate
[Mahowald et al., 2003; Tegen et al., 2004b, 2004a;
Mahowald et al., 2004].
[53] Certain source regions such as Australia are only

weakly constrained by the observations we considered.
There are over two decades of dust storm frequency
observations in this region [Engelstaedter et al., 2003],
which may reduce the disparity of emission estimates that
result from different dust source prescriptions. Our estimate
of the optimal dust cycle is also sensitive to the uncertain
contribution of other aerosol species to measurements of
AOT. The latest generation of satellite retrievals such as
MODIS and MISR are able to distinguish dust from other
aerosols with greater accuracy. While AOT is a strong
constraint upon clay emission, the calculation of the silt
load shows the value of continued ground measurements of
dust concentration and deposition. Additional observations
will result in more confident estimates of the global dust
cycle.

Appendix A: Sensitivity of Optimal Emission

[54] In this appendix, we derive a semi-analytic formula
for the optimal solution, which allows us to rank the
importance of each observation to the optimal solution, as
well as assess its uncertainty.

A1. Which Observations Provide the Strongest
Constraint?

[55] We make two modifications to our definition of
the model error to facilitate a semi-analytic solution.
First, we normalize the error F with respect to each data
set using only the observations, so that S becomes (see
equation (4)):

S2 ¼ 1

M

XM
i¼1

X o
i

� �2
: ðA1Þ

Second, we redefine the total error FT, so that its square is a
weighted sum of the square of the individual errors F (see
equation (5)):

F2
T ¼

X7
j¼1

wjF2
j ðA2Þ

As a result, the optimal solution is only slightly modified.
Total emission is reduced by less than 200 Tg, while the
clay component is nearly unchanged.
[56] The optimal solution is derived using trial values of

global clay and silt emission computed by the AGCM,
denoted by Ec,0 and Es,0, respectively. This emission results
in contributions by clay and silt particles to model variables
such as AOT or surface concentration that can be compared
to observations. We define the model contributions by clay
and silt in the trial simulation as Xi

c and Xi
s, respectively.

(The subscript i refers to a particular observation and varies
with location and month of the climatology.) In general, our
trial variables will not be in the best possible agreement
with the observations. However, because each of these
quantities is linear with respect to emission, we can bring
the model variables into better agreement by varying the
global clay and silt emission, denoted by Ec and Es,
respectively, with respect to the trial values. Then, the
model value Xi

m is:

Xm
i � X c

i

Ec

Ec;0
þ X s

i

Es

Es;0
: ðA3Þ

[57] In Figure 10, we locate the minimum total error FT,
between the model Xi

m and observations Xi
o by varying the

global clay and silt emission through trial and error. Alter-
natively, we substitute (A3) into (3) and (A2):

F2
T ¼

X
k

wk

SkMk

X o
k � X c

k

Ec

Ec;0
� X s

k

Es

Ec;0

� 	2

: ðA4Þ

(Here, the subscript k ranges over all data sets, in addition to
all observations within each data set. The quantities wk, Sk,
and Mk depend only upon the data set.) Equation (A4) is a
least squares problem [Press et al., 1992, chapter 15], that
can be solved for the optimal values of global clay and silt
emission, Ec and Es, that minimize FT.
[58] To simplify notation, we define non-dimensional

values of the observations and model output according to

xk
o �

ffiffiffiffiffiffiffiffi
wk

SkMk

q
Xk
o, xk

c �
ffiffiffiffiffiffiffiffi
wk

SkMk

q
Xk
c, and xk

s �
ffiffiffiffiffiffiffiffi
wk

SkMk

q
Xk
s. Then,

setting the differentials of (A4) with respect to Ec and Es
equal to zero results in the ‘normal equations’ [Press et al.,
1992, chapter 15]:

�c
X
k

xckx
c
k þ �s

X
k

xckx
s
k ¼

X
k

xckx
o
k

�c
X
k

xckx
s
k þ �s

X
k

xskx
s
k ¼

X
k

xskx
o
k

ðA5Þ

where we have defined �c � Ec

Ec;0
and es � Es

Es;0
. This has as a

solution:

�c ¼
1

dc

X
k

c22x
c
k � c12x

s
k

� �
xok

�s ¼
1

dc

X
k

�c12x
c
k þ c11x

s
k

� �
xok

ðA6Þ
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where

c11 ¼
X
k

xckx
c
k ; c12 ¼

X
k

xckx
s
k ;

c22 ¼
X
k

xskx
s
k ; dc ¼ c11c22 � c212:

ðA7Þ

[59] Equation (A6) shows that each observation xk
o contrib-

utes to �c and �s in proportion to c22 xk
c � c12 xk

s and�c12 xk
c +

c11xk
s, respectively. These coefficients of proportionality de-

pend only upon the covariance of the model silt and clay
values, and are independent of the observations. We refer to
them here as ‘filters’, because they influence the contribution
of each observation to the optimal emission. Where the filter
is large, the corresponding observation is weighted more
heavily in its contribution to the optimal value. The filter
corresponding to each observation is shown in Figure A1 for

the RELEVANT set of observations and GINOUX source.
The filters are ranked and sorted by quintile, with a darker
shading representing a higher quintilewith larger filter values.
Negative products are marked by white circles.
[60] Certain data sets are weighted more heavily, despite

our normalization S that makes the contribution to F by
each data set of potentially the same order (4). For clay
emission, filter values are largest for retrievals of AOT and
particle size, while surface concentration, size, and to a
lesser extent, deposition constrain silt emission with larger
weights (Figure A1). In general, observations corresponding
to high dust concentration have the largest weights. For
example, AOT has a higher filter value at Capo Verde than
at a downwind site like Barbados. Similarly, the constraint
upon silt emission by surface concentration is more heavily
weighted at Izaña than downstream. Observations are also
weighted more heavily during months when the concentra-

Figure A1. Factors (or ‘filters’) multiplying the contribution of each observation to the optimal global
emission (see equation (A6)). The filters are ranked in magnitude and identified by quintile. The darkest
shade indicates filters within the first quintile, while filters within the lowest quintile are indicated by the
absence of shading. Negative filters are indicated by a white circle. The observing stations are listed on
the vertical axis, while the horizontal axis represents months of the year. The exception is for deposition
measurements, whose contribution is shaded on the bottom row. For deposition, ‘M’ and ‘O’ represent
the Midway and Oahu stations, respectively, while ‘A’, ‘P’, and ‘I’ respectively denote stations within
the Atlantic, Pacific, and Indian Ocean. C1, C2, and C3 denote size categories for clay ranging from 0.2–
0.3 mm, 0.3–0.6 mm, and 0.6–1 mm. while S1, S2, and S3 denote silt categories ranging from 1–2 mm,
2–4 mm, and 4–8 mm.
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tion is high. The filter corresponding to surface concentra-
tion at Izaña has a mid-summer maximum, which is
associated with the elevation of the model dust plume to
the measurement altitude during these months [Miller et al.,
2006]. Size retrieval filters are largest in categories where
the distribution peaks. Silt retrievals reduce the optimal clay
emission by their negative filter values (Figure A1a). Silt is
a potential constraint upon clay because of the covariance
between the two size categories; variations in silt emission
will affect the model’s agreement with respect to clay
observations.
[61] The strength of the constraint placed upon emission

by an observation depends upon the latter’s product with its
filter. In general, larger filter values (proportional to the
model values xk

c and xk
s) correspond to larger observed

values (Figure A2). For silt particles, the rank correlation
between the filter and observations shown in the figure is
0.48, which is highly significant. The correlation is only
0.10 for clay particles, due to the negative filter values
associated with the size retrievals, although the correlation
rises to 0.56 if absolute values are correlated, and 0.76 if
size retrievals are excluded.
[62] The product of an observation xi

o and its filter, which
sums to give the optimal emission according to (A6), is
shown in Figure A3. Because of the general correlation
between the magnitude of the observed values and the
corresponding filter, the product increases approximately as
the square of the filter value. This magnifies the effect of
the largest observed values upon optimal emission. The
strongest constraints upon emission indicated by Figure A3
are generally the most extreme values in Figure A1. This
further emphasizes the contribution to the optimal solution
of observations in regions of high dust concentration.
[63] It is surprising then, that Pacific stations provide a

weaker constraint upon global emission than stations near

African and Arabian sources. This is in spite of the
proximity of Dalangadzad, which provides both retrievals
of AOT and size, to Asian source regions. For silt, the
Pacific DIRTMAP observation provides the strongest con-
straint upon Asian sources. Clay emission is almost entirely
constrained in the RELEVANT experiment by observations
downwind of Africa and Arabia. Nonetheless, observations
that only weakly constrain global emission may be well-
simulated by the model. Model agreement with AERONET
AOT is better at Dalanzadgad than Solar Village [Miller et
al., 2006].

A2. Uncertainty in Global Optimal Emission

[64] Uncertainty in our estimate of the optimal global
emission results from measurement error, interannual vari-
ability of both the model and observations (which introdu-
ces uncertainty in the inferred climatological value), model
biases, limited knowledge of the contribution of other
aerosol species to the observations, and our arbitrary choice
of measurement types and locations. In Section 5, we
calculate changes to the optimal global emission that result
from using different data sets as a constraint, as well as
including other aerosol species in the model comparison.
Here, we consider the effect of interannual variability. As
shown in Miller et al. [2006], this variability is generally
within 25% of the observed value. We assume measurement
errors are comparatively small, although they are generally
not estimated precisely or extensively documented. An
estimate of uncertainty requires a number of assumptions
that are difficult to verify, so we will not attempt to be
precise.
[65] The optimal values of clay and silt emission, Ec

and Es, are functions of both the observations Xi
o and

corresponding model values Xi
m, according to (A6).

Imprecise knowledge of the observed and model clima-

Figure A2. (a) Clay and (b) silt factors (or ‘filters’) multiplying each observation xk
o in equation (A6),

plotted versus the observation.
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tology can be related to an uncertainty in the optimal clay
emission:

d Ec ¼
XN
i

@Ec

@X o
i

d X o
i þ

XN
i

@Ec

@Xm
i

d Xm
i ; ðA8Þ

with a similar equation for silt. The sum is over all N
observations, corresponding to different physical quantities,
locations, and climatological months.
[66] Assume for simplicity that the model values are

known precisely, so that the second sum is zero. (We will
relax this assumption below.) To calculate the uncertainty in
clay emission, we square the equation and take the expected
value (denoted by an overbar):

s2c � d Ecð Þ2 ¼
XN
i

XN
j

@Ec

@Xo
i

@Ec

@X o
j

d X o
i d X o

j ; ðA9Þ

where sc
2 is the uncertainty of the optimal clay emission.

Often, the observation uncertainties are assumed to be
independent so that:

d X o
i d X o

j ¼ di;j d X o
ið Þ2; ðA10Þ

where di,j equals unity for i equal to j, and zero otherwise. In
this case, the double sum of N 
 N values in (A9) reduces to
a single sum of N values, yielding the familiar formula for
the propagation of errors [Press et al., 1992, chapter 15]:

s2c � d Ecð Þ2 ¼
XN
i

@Ec

@Xo
i

� 	2

d X o
ið Þ2: ðA11Þ

[67] We estimate that the fractional uncertainty of the
observations corresponding to interannual variability is of
order 25%, so that d Xi

o = 0.25 Xi
o [Miller et al., 2006]. By

differentiating the formula for optimal emission (A6) with
respect to each observation Xi

o, we calculate that the
fractional error of clay and silt emission is of order 0.5%
or about 5–10 Tg. The small uncertainty of emission
compared to that of the individual observations results from
the assumption of independent errors, which largely cancel
when considered in aggregate.
[68] In contrast to our assumption of independence,

climatologies from nearby measurement locations are likely
to have dependent errors as a result of interannual variabil-
ity. For example, a year with unusually large dust emission
from the western Sahara will result in high dust concentra-
tion and AOT at most stations downwind over the Atlantic.

Figure A3. Contribution by quintile of each observation to the optimal values of clay and silt emission.
The contribution is defined as the product of each observation xk

o with its filter; the product is ranked by
quintile and plotted as in Figure A1.
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To be sure, this correspondence is not precise, and obser-
vations at locations along the dust trajectory are increasingly
decorrelated with distance.
[69] For the RELEVANT experiment, the observations

are grouped into three major downwind regions,
corresponding to Saharan, Arabian, and Asian sources.
We assume that emission from the three source regions
are independent but that all observations downwind of a
particular source region are perfectly correlated. In addition,
different months of the climatology are assumed to be
uncorrelated. Then, the N = 533 observations in the
RELEVANT case can be divided into 3 
 12 or 36 groups
corresponding to the 3 source regions and 12 months. Each
group consists of roughly 533

36
or 15 observations. The

observations within each group are correlated, but are
uncorrelated with observations from the other groups. Then,
each group contributes 15 
 15 terms to the double sum, for
a total over 36 groups of 15 
 15 
 36 terms. This is to be
compared to the 533 terms in (A11), where the double sum
is evaluated assuming all the observations are independent.
Thus, the uncertainty sc derived from (A11) should be
increased by the square root of 15
15
36

533
or roughly 4. (An

alternative way to visualize this is through the covariance
matrix, which is of size N 
 N and block diagonal, with
each of the 36 blocks of size 15 
 15. Then, the covariance
matrix has roughly 15 
 15 
 36 non-zero terms.)
[70] If we assume that interannual variability in the model

is comparable to the observed value, then the uncertainty
increases by another factor of roughly

ffiffiffi
2

p
, so that the

fractional uncertainty according to (A9) is around 4 

ffiffiffi
2

p

times 0.5%. That is, sc, the uncertainty in clay emission due
to interannual variability, is probably under 4%. However,
we emphasize that our estimate of sc is intended as an upper
bound. In practice, each group of roughly 15 observations
contributing to the double sum in (A9) will be dominated by
a few observations where the dust concentration is highest.
[71] In summary, we suggest that interannual variability

results in uncertainty of the estimated emission that is
probably smaller than a few percent. This uncertainty is
augmented by model biases (due to the source prescription,
for example) and our subjective choice of data types and
locations.

Appendix B: Dependence of Inferred Emission
Upon Observation Distance From Source

[72] Using a heuristic example, we illustrate how distance
of an observing station from the source affects the magni-
tude of the dust cycle inferred from observations.
[73] Say that the observed dust load Lo varies with

distance x downstream from the source according to:

Lo xð Þ ¼ Lo;0 exp
�x

D

� 
; ðB1Þ

and that our model predicts the load Lm(x) according to:

Lm xð Þ ¼ Lm;0 exp
�x

d

� 
; ðB2Þ

where because of excessive wet deposition (or weaker
transport), the modeled dust load decreases more abruptly
downstream than observed: i.e. d < D.

[74] If we constrain Lm,0 using the observed value at the
point x0, then:

Lm;0 exp
�x0

d

� 
¼ Lo;0 exp

�x0

D

� 
; ðB3Þ

so that:

Lm;0 ¼ Lo;0 exp
x0 D� dð Þ

Dd

� 	
> Lo;0: ðB4Þ

The overestimate of Lm,0 increases exponentially with the
distance of the observing site downstream. Were the model
decay scale too large (say due to insufficient deposition),
then Lm,0 < Lo,0, and the underestimate would again increase
with distance of the observing site from the source. In
general, constraining the model with observations leads to
the smallest error for observing sites that are nearest the
source. This is a consequence of any unrealistic behavior in
the model (including errors in deposition or transport) as
dust moves away from the source, and is separate from the
effect of any error in the observations themselves.
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